Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.088
Filtrar
1.
Sci Rep ; 14(1): 8082, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582936

RESUMO

Transcranial magnetic stimulation (TMS) is a neurostimulation device used to modulate brain cortex activity. Our objective was to enhance the therapeutic effectiveness of low-frequency repeated TMS (LF-rTMS) in a rat model of autism spectrum disorder (ASD) induced by prenatal valproic acid (VPA) exposure through the injection of superparamagnetic iron oxide nanoparticles (SPIONs). For the induction of ASD, we administered prenatal VPA (600 mg/kg, I.P.) on the 12.5th day of pregnancy. At postnatal day 30, SPIONs were injected directly into the lateral ventricle of the brain. Subsequently, LF-rTMS treatment was applied for 14 consecutive days. Following the treatment period, behavioral analyses were conducted. At postnatal day 60, brain tissue was extracted, and both biochemical and histological analyses were performed. Our data revealed that prenatal VPA exposure led to behavioral alterations, including changes in social interactions, increased anxiety, and repetitive behavior, along with dysfunction in stress coping strategies. Additionally, we observed reduced levels of SYN, MAP2, and BDNF. These changes were accompanied by a decrease in dendritic spine density in the hippocampal CA1 area. However, LF-rTMS treatment combined with SPIONs successfully reversed these dysfunctions at the behavioral, biochemical, and histological levels, introducing a successful approach for the treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Animais , Humanos , Ácido Valproico/farmacologia , Transtorno Autístico/terapia , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/tratamento farmacológico , Estimulação Magnética Transcraniana , Comportamento Social , Nanopartículas Magnéticas de Óxido de Ferro , Efeitos Tardios da Exposição Pré-Natal/terapia , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal/fisiologia
2.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519733

RESUMO

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Assuntos
Aminoácidos , Excitação Neurológica , Ratos , Masculino , Animais , Aminoácidos/farmacologia , Pentilenotetrazol/farmacologia , Ácido Valproico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Excitação Neurológica/metabolismo , Aminas/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438061

RESUMO

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Assuntos
Infarto do Miocárdio , Ácido Valproico , Coelhos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Antioxidantes , Infarto do Miocárdio/metabolismo , Aorta/metabolismo , Endotélio/metabolismo , Endotélio Vascular/metabolismo
4.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
5.
Artigo em Russo | MEDLINE | ID: mdl-38529870

RESUMO

OBJECTIVE: To study the effect of phenosanic acid (PA) and its combination with valproic acid (VA) on the development of the Epi system. MATERIAL AND METHODS: A model of focal chronic epilepsy in rats was created by applying metallic cobalt to the surface of the sensorimotor area of the cortex. Long-term electrodes were implanted in the sensorimotor cortex of the left and right hemispheres, the hippocampus, and the hypothalamus. The effect of PA (80 mg/kg) and its combination with VA (200 mg/kg) on discharge activity was carried out on the 2nd day and at the stage of generalization of the Epi system - on the 6th day. The stability of the Epi system on day 10 was assessed by provoking the development of epileptic status (Epi status) in response to the administration of thiolactone homocysteine (HMC) at a dose of 5.5 mmol/kg. RESULTS: In rats treated with PA, low discharge activity is observed, which is confirmed by the absence of EEG and motor manifestations of status epilepticus caused by HMC. PA does not suppress paroxysmal activity at the stages of development of the Epi system. VA significantly suppresses paroxysmal activity, but does not affect the formation of new foci of Epi activity in subcortical structures and the contralateral cortex. The epi system of rats treated with VA is characterized by high discharge activity by the 10th day of the experiment and lability to provocation of epi status. The combination of drugs is more pronounced than PA, but less than VA, reduces the numerical characteristics of paroxysmal activity in the brain structures of rats. CONCLUSION: PA when administered alone, in combination with VA, causes a slowdown in the generalization of convulsive foci of Epi activity and prevents the formation of a stable Epi system. VA, having a pronounced anticonvulsant effect, does not weaken the development of the Epi system in the model of focal cobalt-induced epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Ratos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Anticonvulsivantes/efeitos adversos , Convulsões/tratamento farmacológico , Epilepsias Parciais/tratamento farmacológico , Cobalto/efeitos adversos , Eletroencefalografia
6.
Dev Psychobiol ; 66(2): e22469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351305

RESUMO

Autism spectrum disorder (ASD) is characterized by deficits in social interaction and communication and repetitive and restricted behaviors. Sex dimorphism in the brain, including midbrain dopaminergic circuits, can explain differences in social behavior impairment and stereotypic behaviors between male and female individuals with ASD. These abnormal patterns may be due to alterations in dopamine synthesis in the ventral tegmental area (VTA) and substantia nigra (SN). We used an autism-like mouse model by prenatal valproic acid (VPA) exposure. CD1 pregnant female mice were injected with 500 mg/kg VPA or 0.9% NaCl as a vehicle on gestational day 12.5. In the offspring, on postnatal day 31, we examined the social and repetitive behaviors and the number of tyrosine hydroxylase (TH)-positive cells in VTA and SN by sex. Male VPA mice showed impaired social behavior and increased repetitive behaviors when compared to male vehicles. In females, we did not find statistically significant differences in social or repetitive behaviors between the groups. Male VPA mice had fewer TH+ cells in the SN than control-vehicle mice. Interestingly, no cellular changes were observed between females. This study supports the notion that sex dimorphism of certain brain regions is involved in the etiopathogenesis and clinical presentation of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Feminino , Masculino , Animais , Humanos , Ácido Valproico/farmacologia , Caracteres Sexuais , Neurônios Dopaminérgicos/patologia , Comportamento Social , Substância Negra/patologia , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/patologia , Comportamento Animal/fisiologia
7.
Pharmacol Biochem Behav ; 237: 173721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307465

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopment disorder that mainly arises due to abnormalities in different brain regions, resulting in behavioral deficits. Besides its diverse phenotypical features, ASD is associated with complex and varied etiology, presenting challenges in understanding its precise neuro-pathophysiology. Pioglitazone was reported to have a fundamental role in neuroprotection in various other neurological disorders. The present study aimed to investigate the therapeutic potential of pioglitazone in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. Pregnant female Wistar rats received VPA on Embryonic day (E.D12.5) to induce autistic-like-behavioral and neurobiological alterations in their offspring. VPA-exposed rats presented core behavioral symptoms of ASD such as deficits in social interaction, poor spatial and learning behavior, increased anxiety, locomotory and repetitive activity, and decreased exploratory activity. Apart from these, VPA exposure also stimulated neurochemical and histopathological neurodegeneration in various brain regions. We administered three different doses of pioglitazone i.e., 2.5, 5, and 10 mg/kg in rats to assess various parameters. Of all the doses, our study highlighted that 10 mg/kg pioglitazone efficiently attenuated the autistic symptoms along with other neurochemical alterations such as oxidative stress, neuroinflammation, and apoptosis. Moreover, pioglitazone significantly attenuated the neurodegeneration by restoring the neuronal loss in the hippocampus and cerebellum. Taken together, our study suggests that pioglitazone exhibits therapeutic potential in alleviating behavioral abnormalities induced by prenatal VPA exposure in rats. However, further research is needed to fully understand and establish pioglitazone's effectiveness in treating ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Feminino , Animais , Humanos , Ácido Valproico/farmacologia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Ratos Wistar , Pioglitazona/farmacologia , Transtorno Autístico/induzido quimicamente , Comportamento Social , Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Modelos Animais de Doenças
8.
Nitric Oxide ; 145: 21-32, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382865

RESUMO

Neuronal differentiation of adipose tissue-derived stem cells (ASCs) is greatly promoted by valproic acid (VPA) with cAMP elevating agents thorough NO signaling pathways, but its mechanism is not fully understood. In the present study, we investigate the involvement of protein S-nitrosylation in the VPA-promoted neuronal differentiation of ASCs. The whole amount of S-nitrosylated protein was increased by the treatment with VPA alone for three days in ASCs. An inhibitor of thioredoxin reductase (TrxR), auranofin, further increased the amount of S-nitrosylated protein and enhances the VPA-promoted neuronal differentiation in ASCs. On the contrary, another inhibitor of TrxR, dinitrochlorobenzene, inhibited the VPA-promoted neuronal differentiation in ASCs even with cAMP elevating agents, which was accompanied by unexpectedly decreased S-nitrosylated protein. It was considered from these results that increased protein S-nitrosylation is involved in VPA-promoted neuronal differentiation of ASCs. By the proteomic analysis of S-nitrosylated protein in VPA-treated ASCs, no identified proteins could be specifically related to VPA-promoted neuronal differentiation. The identified proteins, however, included those involved in the metabolism of substances regulating neuronal differentiation, such as aspartate and glutamate.


Assuntos
Neurônios , Ácido Valproico , Ácido Valproico/farmacologia , Neurônios/metabolismo , Proteômica , Células-Tronco/metabolismo , Tecido Adiposo
9.
Phytomedicine ; 126: 155459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417243

RESUMO

BACKGROUND: Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE: This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN: CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS: The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION: The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Naftoquinonas , Osteossarcoma , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2 , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/farmacologia
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339037

RESUMO

Hepatocellular carcinoma (HCC) is among the main causes of death by cancer worldwide, representing about 80-90% of all liver cancers. Treatments available for advanced HCC include atezolizumab, bevacizumab, sorafenib, among others. Atezolizumab and bevacizumab are immunological options recently incorporated into first-line treatments, along with sorafenib, for which great treatment achievements have been reached. However, sorafenib resistance is developed in most patients, and therapeutical combinations targeting cancer hallmark mechanisms and intracellular signaling have been proposed. In this review, we compiled evidence of the mechanisms of cell death caused by sorafenib administered alone or in combination with valproic acid and metformin and discussed them from a molecular perspective.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Humanos , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/metabolismo , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Bevacizumab , Metformina/farmacologia , Metformina/uso terapêutico , Morte Celular
11.
Mol Brain ; 17(1): 12, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409127

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) encompasses a diverse range of neurodevelopmental disorders, but the precise underlying pathogenesis remains elusive. This study aim to explore the potential mechanism of TREM2 in regulating microglia function in ASD. MATERIALS AND METHODS: The offspring rat model of ASD was established through prenatal exposure to valproic acid (VPA), and the behavioral symptoms of the ASD model were observed. On postnatal day (PND) 7 and PND 28, the effects of prenatally exposure to VPA on synaptic development and microglia phenotype of offspring rats were observed. Primary microglia were cultured in vitro. Lentivirus and adenovirus were utilized to interfere with TREM2 and overexpress TREM2. RESULTS: Prenatally VPA exposure induced offspring rats to show typical ASD core symptoms, which led to abnormal expression of synapse-related proteins in the prefrontal cortex of offspring rats, changed the phenotype of microglia in offspring rats, promoted the polarization of microglia to pro-inflammatory type, and increased inflammatory response. The experimental results in vitro showed that overexpression of TREM2 could increase the expression of Gephyrin, decrease the content of CD86 protein and increase the content of CD206 protein. In addition, after the expression of TREM2 was interfered, the content of p-P38 MAPK protein increased and the content of p-ELK-1 protein decreased. CONCLUSION: The protective influence of TREM2 on the VPA-induced ASD model is attributed to its inhibition of the P38 MAPK pathway, this protective effect may be achieved by promoting the polarization of microglia to anti-inflammatory phenotype and improving the neuronal synaptic development.


Assuntos
Transtorno do Espectro Autista , Animais , Feminino , Gravidez , Ratos , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Ácido Valproico/farmacologia
12.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391920

RESUMO

Internal granular progenitors (IGPs) in the developing cerebellar cortex of ferrets differentiate towards neural and glial lineages. The present study tracked IGPs that proliferated in response to valproic acid (VPA) to determine their fate during cerebellar cortical histogenesis. Ferret kits were used to administer VPA (200 µg/g body weight) on postnatal days 6 and 7. EdU and BrdU were injected on postnatal days 5 and 7, respectively, to label the post-proliferative and proliferating cells when exposed to VPA. At postnatal day 20, when the external granule layer was most expanded, EdU- and BrdU-single-labeled cells were significantly denser in the inner granular layer of VPA-exposed ferrets than in controls. No EdU- or BrdU-labeling was found in Purkinje cells and molecular layer interneurons. Significantly higher percentages of NeuN and Pax6 immunostaining in VPA-exposed ferrets revealed VPA-induced differentiation of IGPs towards granular neurons in BrdU-single-labeled cells. In contrast, both EdU- and BrdU-single-labeled cells exhibited significantly greater percentages of PCNA immunostaining, which appeared in immature Bergman glia, in the internal granular layer of VPA-exposed ferrets. These findings suggest that VPA affects the proliferation of IGPs to induce differentiative division towards granular neurons as well as post-proliferative IGPs toward differentiation into Bergmann glia.


Assuntos
Furões , Ácido Valproico , Humanos , Animais , Ácido Valproico/farmacologia , Bromodesoxiuridina , Córtex Cerebelar , Células de Purkinje
13.
Mol Biol Rep ; 51(1): 353, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401030

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, a limited range of activities, and deficiencies in social communications. Bone marrow mesenchymal stem cells (BM-MSCs), which secrete factors that stimulate surrounding microenvironment, and BM-MSCs conditioned medium (BM-MSCs-CM), which contains cell-secreted products, have been speculated to hold potential as a therapy for ASD. This study aimed to compare the therapeutic effects of BM-MSCs and BM-MSCs-CM on behavioral and microglial changes in an animal model of autism induced by valproic acid (VPA). METHODS AND RESULTS: Pregnant Wistar rats were administered by VPA at a dose of 600 mg/kg at 12.5 days post-conception. After birth, male pups were included in the study. At 6 weeks of age, one group of rats received intranasal administration of BM-MSCs, while another group received BM-MSCs-CM. The rats were allowed to recover for 2 weeks. Behavioral tests, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry were performed. Both BM-MSCs and BM-MSCs-CM administration significantly improved some behavioral deficits. Furthermore, these treatments notably reduced Iba-1 marker associated with microgliosis. Additionally, there was a significant reduction in the expression of pro-inflammatory cytokines IL-1ß and IL-6, and an increase in the levels of the anti-inflammatory cytokine IL-10 in rats administered by BM-MSCs and BM-MSCs-CM. CONCLUSIONS: Post-developmental administration of BM-MSCs and BM-MSCs-CM can ameliorate prenatal neurodevelopmental deficits, restore cognitive and social behaviors, and modulate microglial and inflammatory markers. Results indicated that the improvement rate was higher in the BM-MSCs group than BM-MSCs-CM group.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Gravidez , Feminino , Ratos , Masculino , Animais , Ácido Valproico/farmacologia , Ácido Valproico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/terapia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células da Medula Óssea/metabolismo
14.
Eur J Pharmacol ; 967: 176335, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331341

RESUMO

This study aimed to investigate the effects of fucoxanthin, a natural compound found in seaweed, on various aspects of autism using a rat model induced by valproic acid (VPA). Pregnant rats were administered VPA (600 mg/kg) on gestational day 12.5, and male pups were orally administered fucoxanthin at 50, 100, or 200 mg/kg beginning on post-natal day (PND) 23-43. Behavioral assessments were conducted on PND 45-53, and on PND 54, the animals were sacrificed for further biochemical analyses (superoxide dismutase (SOD) and glutathione (GSH), nitric oxide (NO)) via UV spectroscopy. Inflammatory markers (IL-17, TNF-α, and IL-1ß) were also analyzed by sandwich ELISA, and the molecular parameters were evaluated through ELISA. The results revealed that, compared with VPA, fucoxanthin improved behavior and neuronal morphology. Specifically, fucoxanthin administration was found to enhance spatial memory, reduce pain sensitivity, and improve social interaction, locomotor activity, balance, and motor coordination. Fucoxanthin also exhibited anti-inflammatory and antioxidant effects, as indicated by the restoration of SOD and GSH levels and reduced inflammatory cytokine levels. Molecular analyses revealed that fucoxanthin restored the levels of GSK-3ß and AKT. Furthermore, fucoxanthin regulates neurotransmitters, which are related to increasing GABA and reducing glutamate levels in the cortex and cerebellum. The therapeutic effects were dose-dependent, with higher doses (200 mg/kg) showing greater efficacy than lower doses (100 mg/kg) in improving behavioral, biochemical, neurotransmitter, and molecular parameters. Fucoxanthin is a potential treatment for autism, but further research, including clinical trials, is necessary to determine its effectiveness in humans.


Assuntos
Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Xantofilas , Gravidez , Feminino , Humanos , Ratos , Masculino , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Comportamento Social , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Modelos Animais de Doenças
15.
CNS Neurosci Ther ; 30(2): e14583, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38357846

RESUMO

OBJECTIVE: To explore the mechanism involved in variable phenotypes of epilepsy models induced by γ-aminobutyric acid type A γ2 subunit (GABRG2) mutations. METHODS: The zebrafish carrying wild-type (WT) GABRG2, mutant GABRG2(P282S), GABRG2(F343L) and GABRG2(I107T) were established by Tol2kit transgenesis system and Gateway method. Behavioral analysis of different transgenic zebrafish was performed with the DanioVision Video-Track framework and the brain activity was analyzed by field potential recording with MD3000 Bio-signal Acquisition and Processing System. The transcriptome analysis was applied to detect the underlying mechanisms of variable phenotypes caused by different GABRG2 mutations. RESULTS: The established Tg(hGABRG2P282S ) zebrafish showed hyperactivity and spontaneous seizures, which were more sensitive to chemical and physical epileptic stimulations. Traditional antiepileptic drugs, such as Clonazepam (CBZ) and valproic acid (VPA), could ameliorate the hyperactivity in Tg(hGABRG2P282S ) zebrafish. The metabolic pathway was significantly changed in the brain transcriptome of Tg(hGABRG2P282S ) zebrafish. In addition, the behavioral activity, production of pro-inflammatory factors, and activation of the IL-2 receptor signal pathway varied among the three mutant zebrafish lines. CONCLUSION: We successfully established transgenic zebrafish epileptic models expressing human mutant GABRG2(P282S), in which CBZ and VPA showed antiepileptic effects. Differential inflammatory responses, especially the SOCS/JAK/STAT signaling pathway, might be related to the phenotypes of genetic epilepsy induced by GABRG2 mutations. Further study will expand the pathological mechanisms of genetic epilepsies and provide a theoretical basis for searching for effective drug treatment.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Mutação/genética , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Fenótipo , Inflamação/genética
17.
J Neurodev Disord ; 16(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166599

RESUMO

BACKGROUND: Individuals with autism spectrum disorders (ASD) often exhibit altered sensory processing and deficits in language development. Prenatal exposure to valproic acid (VPA) increases the risk for ASD and impairs both receptive and expressive language. Like individuals with ASD, rodents prenatally exposed to VPA exhibit degraded auditory cortical processing and abnormal neural activity to sounds. Disrupted neuronal morphology has been documented in earlier processing areas of the auditory pathway in VPA-exposed rodents, but there are no studies documenting early auditory pathway physiology. Therefore, the objective of this study is to characterize inferior colliculus (IC) responses to different sounds in rats prenatally exposed to VPA compared to saline-exposed rats. METHODS: In vivo extracellular multiunit recordings from the inferior colliculus were collected in response to tones, speech sounds, and noise burst trains. RESULTS: Our results indicate that the overall response to speech sounds was degraded in VPA-exposed rats compared to saline-exposed controls, but responses to tones and noise burst trains were unaltered. CONCLUSIONS: These results are consistent with observations in individuals with autism that neural responses to complex sounds, like speech, are often altered, and lays the foundation for future studies of potential therapeutics to improve auditory processing in the VPA rat model of ASD.


Assuntos
Transtorno do Espectro Autista , Colículos Inferiores , Gravidez , Feminino , Ratos , Animais , Ácido Valproico/farmacologia , Colículos Inferiores/metabolismo , Ratos Sprague-Dawley , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Percepção Auditiva/fisiologia
18.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 174-183, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273784

RESUMO

The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , MicroRNAs/metabolismo , Metilação , Proliferação de Células/genética , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
19.
Signal Transduct Target Ther ; 9(1): 24, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246920

RESUMO

The clinical role and underlying mechanisms of valproic acid (VPA) on bone homeostasis remain controversial. Herein, we confirmed that VPA treatment was associated with decreased bone mass and bone mineral density (BMD) in both patients and mice. This effect was attributed to VPA-induced elevation in osteoclast formation and activity. Through RNA-sequencing, we observed a significant rise in precursor miR-6359 expression in VPA-treated osteoclast precursors in vitro, and further, a marked upregulation of mature miR-6359 (miR-6359) in vivo was demonstrated using quantitative real-time PCR (qRT-PCR) and miR-6359 fluorescent in situ hybridization (miR-6359-FISH). Specifically, the miR-6359 was predominantly increased in osteoclast precursors and macrophages but not in neutrophils, T lymphocytes, monocytes and bone marrow-derived mesenchymal stem cells (BMSCs) following VPA stimulation, which influenced osteoclast differentiation and bone-resorptive activity. Additionally, VPA-induced miR-6359 enrichment in osteoclast precursors enhanced reactive oxygen species (ROS) production by silencing the SIRT3 protein expression, followed by activation of the MAPK signaling pathway, which enhanced osteoclast formation and activity, thereby accelerating bone loss. Currently, there are no medications that can effectively treat VPA-induced bone loss. Therefore, we constructed engineered small extracellular vesicles (E-sEVs) targeting osteoclast precursors in bone and naturally carrying anti-miR-6359 by introducing of EXOmotif (CGGGAGC) in the 3'-end of the anti-miR-6359 sequence. We confirmed that the E-sEVs exhibited decent bone/osteoclast precursor targeting and exerted protective therapeutic effects on VPA-induced bone loss, but not on ovariectomy (OVX) and glucocorticoid-induced osteoporotic models, deepening our understanding of the underlying mechanism and treatment strategies for VPA-induced bone loss.


Assuntos
Vesículas Extracelulares , MicroRNAs , Feminino , Humanos , Animais , Camundongos , Ácido Valproico/farmacologia , Antagomirs , Hibridização in Situ Fluorescente , Vesículas Extracelulares/genética , MicroRNAs/genética
20.
Birth Defects Res ; 116(1): e2300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277409

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive behaviors and interests. In previous studies, music has been identified as an intervention therapy for children with ASD. OBJECTIVES: The present study evaluated the effects of music on cognitive behavioral impairments in both sexes of adult rats exposed prenatally to Valproic acid. METHODS: For induction of autism, pregnant female rats were pretreated with either saline or VPA (600 mg/kg.i.p.) at gestational day (GD) 12.5. Male and female offspring were divided into Saline.Non-Music, VPA.Non-Music, Saline.Music, and VPA.Music groups. The adult rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 60 to 90. Social interaction and Morris water maze (MWM) tasks were tested at PND 90. RESULTS: Our results revealed that prenatal exposure to VPA decreased sociability and social memory performance in both sexes of adult rats. Moreover, prenatal exposure to VPA created learning and memory impairments in both sexes of adult rats in the MWM task. Music intervention improved sociability in both sexes of VPA-exposed rats and social memory in both sexes of VPA-exposed rats, especially in females. Furthermore, our results revealed that music ameliorated learning impairments in VPA-exposed female rats in the MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes, especially in females, which needs more investigation in molecular and histological fields in future studies. CONCLUSION: Music intervention improved sociability and social memory in adult VPA-exposed rats, especially in female animals. Furthermore, music improved memory impairments in VPA-exposed rats of both sexes. It seems that music had a better influence on female rats. However, future studies need more investigations in molecular and histological fields.


Assuntos
Transtorno do Espectro Autista , Música , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Criança , Ratos , Masculino , Feminino , Animais , Ácido Valproico/farmacologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...